<img height="1" width="1" style="display:none;" alt="" src="https://dc.ads.linkedin.com/collect/?pid=81693&amp;fmt=gif">
Español

Qué es un clúster, para qué sirve y cuáles son sus ventajas y objetivos + ejemplos

Resumen del post

¿Alguna vez te has preguntado cómo las empresas pueden entender mejor a sus clientes y ofrecerles productos o servicios que realmente deseen? En un mundo donde el mercado es cada vez más competitivo y diversificado, la respuesta se encuentra en una estrategia poderosa: el clustering

En este artículo, exploraremos en detalle el mundo que és un clúster y cómo esta técnica puede ayudar a las empresas a crear valor, satisfacer las necesidades de sus clientes y destacar en un mercado cada vez más competitivo.  ¿Empezamos? 

New Call-to-action

¿Qué es un clúster? 

Quienes saben qué es un clúster tienen claro que se trata de una unidad de algo que, a su vez, está compuesto por elementos de menor rango y con identidad propia. El significado de clúster es bastante sencillo y tiene mucho que ver con identificar rasgos comunes y categorizar.

Cuando hablamos de clusterizar, nos referimos a separar o categorizar a un grupo de empresas o de personas de acuerdo con una serie de características compartidas. Esto permite la creación de subcategorías de personas a las que poder direccionar mejor un mensaje, una campaña o un producto. 

De igual manera, el clúster también puede hacer referencia a una agrupación empresarial o de organizaciones que juntan sus estrategias para hacer frente a sus competidores. La unión hace la fuerza, también en el entorno empresarial, cuando las empresas interconectadas encuentran una agrupación de especialidades o la misma estrategia pueden lograr un mayor impacto actuando como un clúster que por separado.

Para qué sirve el clúster

Los clústeres sirven para formar alianzas en las que cada parte aporta su granito de arena en relación con la meta propuesta, sobre todo, en lo que respecta a que aumentan la productividad y rentabilidad. Conseguir la segmentación de una campaña es esencial para su eficacia. Si se entrega a las personas indicadas, generaremos más conversiones, menos costes y mayor retorno.

Anteriormente, en el marketing, era común que las empresas delimitaran el público objetivo, que podrían ser mujeres, de 40 a 50 años, que tenían hijos. Esta segmentación es amplia e incluso puede funcionar para el marketing offline, pero online, ciertamente, no ofrecerá grandes resultados.

Por otro lado, un cluster empresarial es una muy buena forma de conseguir alcanzar nuevas metas y mejorar en puntos donde se flaqueaba gracias al aporte de los demás integrantes del clúster. Para los consumidores, es una situación que aporta mayor beneficio al mejorar las posibilidades de un negocio.

¿Te gusta lo que estás leyendo? ¡Suscríbete al blog!

Objetivos de la clusterización

Según el ámbito en el que apliquemos el clustering, sea en marketing o en el ámbito empresarial, se perseguirán unos objetivos específicos u otros. Pero, en cualquier caso, su razón de ser tiene que ver con aumentar la productividad de las empresas, una meta que puede lograrse sin necesidad de una inversión en alta tecnología.

En el ámbito empresarial, el clúster significa una oportunidad de crecimiento y de mejora en los aspectos donde la empresa no estaba en su mejor momento. En cuanto a los clientes, esta unión le aportará mayores beneficios, por lo que su experiencia con las empresas ahora será más satisfactoria.

Los especialistas en marketing suelen utilizar el análisis de clústeres para desarrollar segmentos de mercado, lo que permite un mejor posicionamiento de productos y mensajes. Esto sirve a la empresa para posicionarse mejor, explorar nuevos mercados y diseñar productos que grupos específicos consideren relevantes y valiosos.

Ventajas de un clúster: 3 beneficios del clustering para tu empresa

La ventaja fundamental de un clúster es unir fuerzas para alcanzar un objetivo en conjunto. La agrupación en clústeres permite identificar y definir patrones comunes entre elementos de datos. De esta forma, se pueden determinar nuevas estructuras que convierten en una tarea más sencilla la toma de decisiones.

Como puedes imaginar, las ventajas de apoyarse en el clúster tienen que ver con:

1. Análisis más completos

La clusterización permite trabajar de una forma más rápida y exacta. Aplicando esta metodología será más fácil analizar y tener resultados precisos cobre el comportamiento de los clientes, pudiendo así dirigir de forma más correcta los productos. Es por esto que el análisis en clústeres se suele emplear para poner en marcha el producto mínimo viable.

2. Aumento de la precisión de las campañas

Al poder llevar a cabo análisis más completos y de forma más sencilla, podremos conseguir un menor coste de adquisición y un mayor retorno de la inversión. En definitiva, alcanzamos dos objetivos relevantes: alto rendimiento y aumento de la productividad.

3. Fortalecimiento de la fidelización

Al conocer a tus clientes, podrás crear productos y servicios más adecuados para sus necesidades. Los estudios continuos basados en clústeres pueden ser fundamentales para que los clientes se sientan comprendidos, adquieran mayor confianza en tu marca y aumente su lealtad.

Casos de uso del clustering en marketing

La agrupación en clústeres de los clientes es uno de los dominios más conocidos donde aplicar esta metodología en marketing digital, ya que ayuda a agrupar historias de perfiles similares. Pero no es la única oportunidad de aprovechar las ventajas del clúster. De hecho, se pueden aplicar en más campos: 

Caso de uso en clientes

Es sin duda la aplicación fundamental, ya que podemos configurar diferentes clústeres basándonos en características o comportamientos. Así, ejemplos de clústeres podrían ser: actividad de navegación del cliente, datos demográficos, valor monetario, artículos comprados o comportamiento offline.

Caso de uso en productos

Otro caso de uso interesante es la agrupación de productos, que puede basarse en atributos de productos como los relacionados con el momento en que se compró el producto, quién lo compró o dónde se compró, por ejemplo.

Caso de uso en SEO

La agrupación también se puede aplicar en la metodología SEO, concretamente en las palabras clave. El análisis de clústeres se puede aplicar en función de la clasificación de las palabras clave, puntuación de dificultad o puntuación de autoridad, intención de búsqueda. Es una estrategia fundamental, por ejemplo, para el posicionamiento por términos de long tail, ya que permite el refuerzo semántico de contenidos web.

Los diferentes tipos de análisis de clústeres

Existen multitud de métodos para realizar el análisis de clústeres, pero hay tres que se utilizan en marketing muy a menudo. Se trata de los siguientes:

Clúster jerárquico

Una primera clasificación sería en métodos jerárquicos o no jerárquicos. Es decir, se agrupa a los individuos en fases jerárquicas. Este método de data mining para clasificar datos se basa en la distancia entre cada individuo y busca que los datos que están dentro de un clúster sean los más similares entre sí.

Podemos entenderlo mejor con estas dos imágenes: en la primera, vemos como los datos están distribuidos, sin más, y en la segunda se comienzan a agrupar en función de la distancia. De esta forma se crea un árbol de grupo.

clúster-jerárquico

Clúster de k-means

Este método se utiliza para agrupar rápidamente grandes conjuntos de datos. Este enfoque puede ayudarte a resolver algunas preguntas como: ¿qué tipo de clientes tengo?, ¿cuáles son los que menos productos contratan?, ¿qué tiendas venden más (o menos) de lo que deberían?, ¿están bien ubicadas? o ¿cuáles son los clientes más sensibles al precio?

Comenzamos seleccionando algunos individuos, que serán los representantes de cada clúster, los “centros”. Una vez hecho esto, el algoritmo permite que podamos asignar al resto de los individuos junto al que ocupa una posición central y que se encuentra más cerca. Si algún individuo destaca por encima del “centro”, habrá que actualizarlo. Estos pasos se repiten hasta que los grupos se mantienen iguales, sin nuevas reasignaciones.

En la imagen de debajo, se descubre a cuatro tipos de cliente en base a tres dimensiones de clusterización.

clúster-k-means

Grupo de dos pasos

Este método utiliza un algoritmo de clúster para identificar agrupaciones realizando primero una agrupación previa y luego realizando métodos jerárquicos. La agrupación en clústeres de dos pasos es mejor para trabajar con conjuntos de datos más grandes que, de lo contrario, tomaría mucho tiempo calcular con métodos estrictamente jerárquicos.

Esencialmente, el análisis de clústeres de dos pasos es una combinación de análisis de clústeres jerárquicos y de k-medias. Puede manejar datos de escala y ordinales, y selecciona automáticamente el número de grupos. Es como unir dos centros de investigación trabajando a pleno rendimiento.

¿Cómo es el proceso de agrupamiento en el clustering?

El proceso de agrupamiento (clustering, propiamente dicho) consiste en dividir toda la información en grupos, también conocidos como clústeres, basándonos en patrones de datos. Esta metodología es una de las formas de aprendizaje no supervisado más utilizadas.

Se trata de un método no supervisado, ya que, al principio, no se conoce la variable respuesta, que indicaría a que grupo pertenece realmente cada observación.

El clustering es una herramienta muy eficaz para dar sentido a los datos y para agruparlos en grupos similares. Su aportación ayuda a descifrar estructuras y patrones en un conjunto de datos que no serían fáciles de identificar para el ojo humano.

Antes de organizar los clústeres

Comenzar un proceso de clusterización puede llegar a ser muy similar a recoger tomates de un huerto, los hay más verdes, más maduros, otros ni verdes ni maduros, etc. El agricultor va seleccionando los tomates, los que están más duros los deja y los más blandos y de mejor color, los mete en la caja. Esta operación no deja de ser un proceso en clústeres.

Primero observa toda la muestra a partir de dos características (color y textura); después, comienza a segmentar en dos grupos: los verdes y los duros. Dos grupos. La diferencia existente entre este ejemplo de clúster y la realidad es que aquí es sencillo saber qué grupos nos íbamos a encontrar, pero en muestras más complejas es imposible saber con antelación qué características similares vamos a encontrar para conformar los clústeres. Por esto, se conoce el clustering como una técnica de aprendizaje no supervisado.

Las claves de esta fase de preparación son:

  1. Organizar los datos a nivel granular (separando la información que tenemos de cada producto, o cada cliente o cada canal).
  2. Recoger toda esa información en un almacén de datos.
  3. Aplicar técnicas de normalización para unificar la escala numérica en que se recoge cada pieza de información.

Pasos para una agrupación efectiva

Estos son los pasos que puedes seguir cuando vayas a aplicar segmentación de datos:

  1. Estandarización: para calcular buenos clústeres es necesario estandarizar los datos. 
  2. Dibujar la correlación entre características: es importante hacerte una idea de las variables que están más relacionadas entre sí para saber qué variables pueden dominar los clústeres.
  3. Calcular el número óptimo de clústeres: este es un buen momento para emplear k-means, un método que nos ofrece estrategias para calcular el número óptimo de clústeres. Fundamental para realizar una buena segmentación.
  4. Calcular los clústeres con diferentes técnicas: calcula los clústeres con diferentes técnicas (k-means, grupo de dos pasos, jerárquico). Dibuja los clústeres que has calculado y mira cuál de las técnicas produce clústeres con más sentido real para ti.
  5. Compara los clústeres que has calculado: el último paso es comparar las características de los grupos que has creado con la técnica seleccionada. Es crucial ver si encuentras diferencias significativas entre grupos según las características y en qué variables se ven esas diferencias. De esta forma, aportarás una interpretación real a los clústeres que has encontrado.

Ejemplos: análisis de clústeres en la práctica

No es su única aplicación, como demuestran estos ejemplos:

Netflix

Netflix sabe cómo aprovechar las posibilidades del clustering. Sin duda alguna, es uno de los ejemplos más utilizados para observar la clusterización de clientes. Sus complejos algoritmos se encargan de dividir en diferentes grupos a los suscriptores que tienen gustos comunes y particulares, teniendo así más eficacia a la hora de crear series o películas originales.

ejemplo-cluster-netflix

Fuente: Growth Bay

Spotify

Spotify utiliza el clustering para recomendar las canciones a los usuarios, aunque lo hace de manera más general que la plataforma de streaming.

Silicon Valley

Silicon Valley sería el caso más paradigmático de clúster de empresas. Todas las grandes compañías de internet están allí. Puede decirse que, si quieres ser alguien en el mundillo de la red, tienes que haber estado en San Francisco. A pesar de que las empresas que lo componen compiten entre sí, el hecho de estar concentradas en un mismo lugar da pie a multitud de sinergias, desde trabajadores que cambian fácilmente una por otra hasta charlas, conferencias y, sobre todo, una misma imagen de innovación. Y es ese el gran valor de un clúster empresarial, que parte de esa concentración geográfica.

Conclusiones sobre el clúster

En marketing, el clustering constituye un excelente soporte para la exploración de datos, ya que facilita la visualización y permite acelerar el análisis. La segmentación de clientes es una de las aplicaciones más comunes de la agrupación en clúster.

Esta estrategia abarca todas las funciones, incluidas las telecomunicaciones, el comercio electrónico, los deportes, la publicidad, las ventas, etc.

Conocer a los usuarios, clientes y potenciales clientes, y contar con la máxima información de cada uno de ellos, nos hará afinar mucho más y ser más eficaces en las acciones y campañas. Las bases de datos en marketing digital se pueden emplear en todas las acciones de una estrategia:

  1. En redes sociales, conociendo los fans y sus gustos y preferencias, permitirán lanzar acciones que impacten al público objetivo.
  2. A través del email marketing permitirá dirigir y enviar emails cada vez más personalizados.
  3. Con SEO o SEM permitirá generar mayores conversiones.

Para decidir dónde empezar a crear un clúster detrás de otro y ganar en visibilidad, puedes evaluar las áreas donde no estás generando los resultados esperados, y empezar por ahí; quizás haya algo que has pasado por alto y gracias al clustering no tardarás en averiguar.

¿Te ha quedado alguna duda al respecto? ¡Compártela en la sección de comentarios!

New Call-to-action

Publicado y actualizado el 18 de octubre de 2022.

Revisado y validado por Susana Meijomil, Inbound Content Manager en InboundCycle.

Fuentes

  1. Growth Bay - Personalisation according to Netflix

FAQs sobre los clústers

  • ¿Qué tipos de clúster existen?

    Los clústeres pueden darse en todo tipo de disciplinas, desde la informática hasta la genética o los modelos empresariales, y campos como el marketing. Según el tipo de algoritmo que se aplique se puede crear un tipo u otro de clúster. Pero hay tres métodos principales que se utilizan en marketing:

    • Jerárquico
    • K-means
    • Grupo de dos pasos
  • ¿Qué es el modelo de clúster?

    La agrupación en clústeres es un modelo de identificación de grupos de registros similares y posterior etiquetado de registros según el grupo al que pertenecen. Esto se lleva a cabo sin los conocimientos previos sobre los grupos y sus características.

  • ¿Cómo se aplica un clúster?

    Para aplicar la metodología clúster debemos dividir toda la información en grupos, o clústeres, basándonos en patrones de datos.

    Pasos para una agrupación efectiva: 

    1. Estandarización
    2. Correlación entre características
    3. Calcular el número óptimo de clústeres
    4. Calcular los clústeres con una de las técnicas
    5. Comparar los clústeres que has calculado
  • ¿Cómo funciona un clúster empresarial?

    Un clúster es una especie de concentración de empresas en una zona geográfica determinada o la concentración de diferentes organizaciones relacionadas con una materia concreta y que están presentes en un estado o región. La razón de ser de estos clústeres es que consiguen aumentar la productividad de las empresas.

  • ¿Cómo se hace un clúster?

    Hacer un clúster es separar o categorizar a un grupo de empresas o de personas de acuerdo con una serie de características compartidas. Esto permite la creación de subcategorías de personas a las que poder direccionar mejor un mensaje, una campaña o un producto.
  • ¿Qué es un área de clúster?

    Un área de clúster es un lugar donde hay una concentración de empresas, personas o datos que comparten las mismas características.

  • ¿Qué es el sistema de clústeres?

    Cuando hablamos de clustering nos referimos a separar o categorizar un grupo de empresas o personas según una serie de características compartidas. Esto permite crear subcategorías de personas a las que se puede dirigir mejor un mensaje, campaña o producto.

  • ¿Por qué se utiliza la agrupación?

    La agrupación se utiliza para identificar grupos de objetos similares en conjuntos de datos con dos o más cantidades variables. En la práctica, estos datos pueden recopilarse de bases de datos de marketing, biomédicas o geoespaciales, entre muchos otros lugares.

  • ¿Qué significa clúster en los negocios?

    Un clúster es una especie de concentración de empresas en un área geográfica específica o la concentración de diferentes organizaciones relacionadas con un tema específico y que están presentes en un estado o región. La razón de ser de estos clústeres es que consiguen aumentar la productividad de las empresas.

Ver más

Otros artículos que te pueden interesar...

Marketing digital Transformación digital en e-commerce: cómo triunfar en marketplaces
Por Sarah Vercheval en
Marketing digital Marketing predictivo: qué es, para qué sirve y ejemplos prácticos
Por Ana Claudia Ferreira en
Marketing digital Qué es el Social Listening, ventajas y cómo aplicarlo
Por Sarah Vercheval en
Marketing digital Cómo aplicar el Big Data en el Marketing Digital
Por Ana Claudia Ferreira en

¿Y tú qué opinas? ¡Déjanos aquí tus comentarios!

Suscríbete al Blog
Suscríbete por email y recibe además un pack de bienvenida con nuestros 5 mejores artículos